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The US Precision Medicine Initiative defines precision medi-
cine as “an emerging approach for disease treatment and pre-
vention taking into account individual variability in genes, 

environment, and life style for each person”1–4. Clinicians today can 
conduct panoramic molecular analyses to characterize many dis-
eases, but current precision medicine is still primarily limited to 
disease treatment rather than prevention and early detection. The 
current manifestations of precision medicine address disease retro-
spectively after many symptoms have already appeared. Although 
clinicians are able to tailor therapies to address the disease process 
of each patient, they are at a considerable disadvantage owing to 
possible delayed treatment. Thus, equal emphasis should be given to 
disease prevention and early detection as well as disease treatment.

Instead of precision medicine, the rapidly evolving field of 
precision health has expanded efforts in the prevention and early 
detection of disease through risk-tailored longitudinal monitor-
ing5. A similar idea is already realized in the aircraft industry, which 
implements continuous monitoring of jet engines with hundreds of 
sensors to prevent engine failure. Unfortunately, in contrast to the 
aircraft industry, the fact that a normal adult in the United States vis-
its a healthcare provider fewer than four times per year6 implies that 
surveillance of the human body is limited, infrequent and possibly 

insufficient. Implementing precision health strategies is therefore 
believed to make a considerable difference to both the habits and 
the health of a person over a long period of time. In this regard, 
we previously proposed a framework for precision health5, suggest-
ing the importance of ‘passive monitoring and the smart home’ and 
‘delivering information and guidance through the health portal’.

Invasive clinical procedures are not suitable for continuous 
health monitoring in a non-clinical environment, as they are often 
distressing, costly and burdensome for the public. Even a minimally 
invasive blood draw, despite its great potential in diagnostics7,8, is 
burdensome when it comes to the healthy population. Thus, the 
ideal sources of diagnostic information for continuous health mon-
itoring are the potentially information-rich molecular contents of 
breath9,10, sweat11,12, saliva13,14, urine and stool15–20, all of which are 
complex by-products that are affected by human body systems, 
activities and external environments that provide valuable infor-
mation on an individual’s health and are naturally excreted every 
day. Routine medical tests for these excreta include urinalysis, uro-
flowmetry and stool analysis, such as microscopic examination, 
chemical tests and microbiological tests. Urinalysis is important 
for accessing the biochemical constituents of the urine and its rela-
tionship with various disease states, such as diabetes, metabolic 
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abnormalities, liver diseases, some cancers (such as prostate, kid-
ney and bladder), biliary and hepatic obstructions, and diseases of 
the kidneys and urinary tract21,22. These tests are already offered for 
in-home use and are commercially available on the market in the 
form of test strips. In addition to the biochemical analysis of urine, 
the standard technique for the physical and quantitative analysis 
of urination is known as uroflowmetry, which measures the flow 
of urine and tracks the velocity, volume and the duration of urina-
tion events23–26. Uroflowmetry is used as a diagnostic test to assess 
the function of the urinary tract. Stool analysis is also important 
for diagnosing gastrointestinal disorders, including poor nutrient 
absorption27, pancreatitis28–33, infections34–36 and cancers17,37,38. In 
particular, the Bristol stool form scale (BSFS; BS1–BS7) categorizes 
the form of stool to be used as an assessment tool for the diagno-
sis of various bowel diseases or evaluation of treatment efficacy 
(Supplementary Table 1). The use of an objective scale facilitates 
accurate communication of clinically useful information between 
patients and physicians39,40. Unfortunately, despite its demonstrated 
clinical use, there are no clinically approved modalities that can reli-
ably and consistently monitor human excreta in the home setting. 
Even these objective scales are subject to variations in interpretation 
by the patient. It has been reported that there are a certain level of 
disparities between the descriptions of stool by patients and true 
stool classification41. Furthermore, BSFS results assessed by physi-
cians were reported to be substantially superior to assessments by 
nurses or patients42.

The intersection of continuous health monitoring and the valu-
able clinical information obtained from analysing human excreta 
lies in the smart toilet. Aside from a handful of prototypes, limited 
attempts by industrial manufacturers to build a consumer-grade 
smart toilet have been made. A Japanese company, has pursued the 
smart-toilet system since the mid-1980s and has published several 
patents on smart-toilet implementation43–45. One of its latest prod-
ucts, announced in 2008, however, lacks clinical utility and is not 
readily integrated with a user’s electronic health record (EHR) sys-
tem. Moreover, the major measurements are simple health data, 
such as urine temperature, diet, body fat and weight, which, unfor-
tunately, rarely provide clinically actionable information. Moreover, 
with a listed price of US$6,100 per unit (with complete installation), 
it is probably not affordable for common household use. Similar 
ideas and inventions to achieve a smart toilet have been introduced 
in various formats; however, they have not been successfully trans-
lated into the clinic–home interface. This is primarily due to the 
lack of actionable clinical data and compatibility of existing smart 
toilet systems with clinical decision-making. Furthermore, stool 
sampling and analysis have proven to be logistically challenging for 
existing commercial toilets because the homogenization of stool 
before analysis is non-trivial. Finally, both current urinalysis and 
stool analysis require some degree of human intervention to record 
results, both of which can be burdensome, can cause user variabil-
ity and may result in an invasion of private health information—
which is yet another barrier to the widespread use of the smart toilet  
for healthcare.

Here we present a proof-of-concept toilet technology for the 
delivery of non-invasive and robust measurements of excreta for 
continuous monitoring and precision health. We focus on clini-
cally relevant assays for both urinalysis and stool analysis. Standard 
urinalysis test strips46 were mounted within the toilet system and 
automatically interact with the urine stream with a motion sensor 
and a mechanical extender. Furthermore, video analysis of the urine 
stream conducted uroflowmetry to measure baselines and to iden-
tify abnormal urine flow associated with diseases. For stool analy-
sis, images of stool in the toilet system were collected for grading 
on the BSFS using an automated classifier with a machine learn-
ing algorithm. It was also able to collect additional information, 
such as first stool dropping time and total seating time, which can 

potentially be acted on by clinicians to help to manage constipa-
tion and haemorrhoids. Our system also uses fingerprinting and a 
distinctive method of using anal creases (the distinctive feature of 
the anoderm, referred to here as analprint) as biometric identifi-
ers to securely associate the collected data with the user’s identity. 
Together, these measurements were chosen to maximize the clinical 
utility (Supplementary Table 2) of the toilet while hopefully remain-
ing affordable and widely deployable.

Results
Overall workflow. We developed fully automated toilet modules that 
can be mounted onto existing toilets (Fig. 1). Three discrete mod-
ules for the toilet system were developed—urinalysis (10-parameter 
urinalysis test strip), uroflowmetry using computer-vision analysis, 
and stool analysis (classification in BSFS and defecation timings). 
The initial prototype includes two-factor user identification using 
flush lever fingerprinting and analprint recognition, and data from 
the urinalysis, uroflowmetry and stool analysis were automatically 
transferred to a cloud system. A schematic flowchart of the toilet 
system is provided in the Supplementary Schematic.

Urinalysis. Whereas traditional urinalysis includes chemical and 
microscopic examination of urine22, in this proof-of-concept study, 
we conducted biochemical urinalysis by integrating a ten-parameter 
urinalysis test strip46 into the toilet system. This strip provides quali-
tative and semi-quantitative urinalysis of ten biomarkers: erythro-
cytes, urobilinogen, bilirubin, protein, nitrite, ketones, glucose, pH, 
specific gravity and leukocytes. Two participants (one male (aged 
39 years) and one female (aged 39 years)) were instructed to use test 
strips whenever they voided (Supplementary Fig. 1).

To implement this module in the toilet system, we salvaged the 
external enclosure of a commercially available electronic bidet. We 
assumed a urination position of an adult male aiming towards the 
centre of the toilet bowl (Fig. 2, Supplementary Fig. 2). A deck of 
test strips are loaded into a cartridge, which was designed as an 
insert into the toilet system. The beginning of urination is auto-
matically detected with a passive infrared motion sensor. After 
motion is detected, a test strip is automatically loaded onto the 
deployment unit and strips are deployed using a unipolar step-
per motor. Rather than using the dip-stick method, direct spray-
ing onto the strip was used for this application. After a sufficient 
amount of time for a user to fully saturate the strip with urine 
(30–60 s)47, the deployment unit is retracted into its original posi-
tion, and then monitored by a video camera (Fig. 2a). Raw video 
data captured using a camera, with lighting conditions normalized 
by a white light-emitting diode (LED) strip, are analysed in real-
time, including red–green–blue (RGB) kinematics and control 
versus active comparisons, which are then wirelessly transferred 
to a cloud storage facility (Fig. 2b,c, Supplementary Fig. 3). After 
urination is complete, a strip-discarding servo motor attached to 
the deployment module releases the used strip such that the strip 
is discarded into the toilet bowl. Moreover, to make the strip envi-
ronmentally-friendly and safe for septic systems, we replaced the 
plastic backbone of the strip with a water-soluble polysaccharide 
backbone. An automatic strip feeder replenishes the strip after a 
urination event is complete.

Computer-vision uroflowmeter. A standard uroflowmeter 
(URODYN1000, Dantec Medical), which is installed in the Stanford 
Urology Clinic, uses the spinning-disk principle to measure the fol-
lowing metrics: voiding time, time to maximum flow, maximum flow 
rate, average flow rate and total voided volume. Parts of these metrics 
were integrated into the toilet system with computer-vision analysis.

As a proof of concept, we developed a computer-vision uroflow-
metry module. Two high-speed cameras (GoPro Hero 7, GoPro) 
were positioned at two fixed locations close to and facing away from 
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the user to record a series of frames of the urine stream. The cam-
era setting was set to a resolution of 960 × 1280 px, high speed (240 
frames per second) and wide-angle field of view (FOV).

To assess the proposed uroflowmetry module, multiple emu-
lated urination events within a normal physiological range48 of 
between 50 ml and 670 ml and multiple urinations from ten male 
participants (aged 19–40) were recorded and analysed using the 
computer-vision uroflowmetry module (Fig. 2d). Ten male par-
ticipants performed a total of 31 urinations and, additionally, 68 
emulated streams were tested over a period of 5 weeks. Details 
regarding specific algorithms as well as the setup are provided in 
Supplementary Fig. 4. In brief, recorded videos from two cameras 
were fragmented into individual frames, preprocessed to extract the 
urine stream and synchronized for corrections. For accurate mea-
surement of the total voided volume using the computer-vision uro-
flowmetry module, depth-correction and flow-rate-correction were 
performed. Geometric means of the pixel values from two cameras, 
in addition to the depth information, represent a three-dimensional 
(3D) volume of the urine stream. The flow rate estimation was per-
formed by counting pixels in both the top and bottom regions of 
interest (ROIs; 10% in the vertical direction) within each frame and 

running the cross-correlation function to estimate the frame shift 
between the two ROIs. The urine volume was represented as the 
sum of depth-corrected pixels divided by the frame shift calculated 
from the flow-rate estimation. Furthermore, the voiding time was 
estimated from the start point and the end point of the urination 
event with the known video frame rate.

To observe the urodynamics, we compared a micrograph gener-
ated using the standard uroflowmeter and a graph calculated using 
the computer-vision uroflowmetry method. In Fig. 2e, we noted that 
there is a significant correlation between the two. However, during 
the end phase of the urination—terminal dribbling, which was not 
detected by standard uroflowmetry but was successfully captured 
by computer-vision uroflowmetry—there were discrepancies in uri-
nation duration comparisons (Fig. 2f, blue arrow). Despite the dis-
crepancies, voiding times recorded by standard uroflowmetry and 
computer-vision uroflowmetry had a high linear correlation with 
the number of video frames (Pearson’s r = 0.96). We believe that 
inconsistencies with regard to terminal dribbling can provide valu-
able information about the prostate and bladder functions49.

Our algorithm also accurately determined the total voided vol-
ume using depth- and flow-rate-corrected pixel information from 
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Fig. 1 | Schematic of the toilet system. A perspective view of a toilet with a mountable device for continuously measuring baselines of human excreta. The 
toilet system includes (1) a 10-parameter test-strip-based urinalysis with a retractable cartridge; (2) computer-vision uroflowmetry with two high-speed 
cameras (the blue dotted lines represent the FOV from each camera); (3) stool classification by deep learning (the blue dotted lines represent the FOV of 
the defecation monitoring camera); (4) defecation time measurement detected by a pressure sensor below the toilet seat (the red arrow represents the 
force applied to the pressure sensor); (5) two-biometric identifications, an analprint scan (the green box represents the template-matching algorithm) 
and a fingerprint scanner on the flush lever; and (6) the ability to transfer all data by wireless communication to a cloud-based health portal system. Right: 
photographs of the actual system mounted on a toilet.
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synchronized video frames. This method showed a linear correla-
tion (Pearson’s r = 0.92) between the corrected pixel sum as mea-
sured using computer-vision uroflowmetry and the total voided 
volume measured on the basis of standard uroflowmetry. The main 
discrepancies were caused by urine streams with an extremely high 
flow rate; nevertheless, this limitation could be resolved by using 
a higher-frame-rate camera to capture the stream in finer time 
stamps. The camera FOV can be further optimized by vertically 
increasing the FOV to capture more of each urine stream for better 
estimation of the urine volume and flow rate.

Stool classification. In contrast to the pathological assessment 
(biopsy) used in cancer diagnosis, there is no existing gold stan-
dard for BSFS classification because BSFS is based purely on visual 
assessment. Therefore, two board-certified general surgeons (sub-
specialty of coloproctology) independently annotated all of the 
stool images with a corresponding BSFS to assign them as the gold 
standard. To compare their classification concordance, we created 
confusion matrices, which describe the performance of a classifier 
on the basis of true values (Fig. 3a). The level of concordance was 
then measured using the Matthews correlation coefficient (MCC), 
which is a multiclass generalization of a classic metric that ranges 
from 1 (perfect classification) to −1 (asymptotic extreme misclas-
sification). Furthermore, the confusion entropy (CEN), a measure 
of performance in multiclass problems, was calculated from the 
confusion matrices50–52, ranging from 0 (perfect classification) to 1 
(complete misclassification). The MCC and CEN values were cal-
culated as 0.70 and 0.25, respectively, showing a satisfactory agree-
ment between the two surgeons. The calculations are provided in 
detail in Supplementary Table 3.

Initially, we retrained Inception v.3 on ten toilet classes compris-
ing the seven BSFS classes plus three other toilet classes (clean state, 
urine state and toilet paper state; Fig. 3). Here we reduced this medi-
cally relevant classification to a trichotomous decision task—consti-
pated stool, normal stool and diarrhoea (Fig. 3 and Supplementary 
Fig. 5). BS1 and BS2 of the BSFS are regarded as abnormally hard 
stools (indicative of constipation in conjunction with other symp-
toms), whereas BS6 and BS7 are regarded as abnormal liquid/soft 
stools (indicative of diarrhoea with other symptoms). The other 
types—BS3, BS4 and BS5—are generally considered to be the most 
normal and modal forms of stool in the healthy adult population53. 
As receiver operating characteristic (ROC) analysis is traditionally 
used for dichotomous diagnostic tasks, the corresponding ROCs 
were reduced to a dichotomous classification on the basis of a mul-
ticlass-classification strategy, the one versus rest approach, with the 
samples of the corresponding class as positive samples and all of the 
other samples as negative samples.

Two independent gold standards by these surgeons were used for 
deep convolutional neural network (CNN) training (we therefore 
have two independent CNNs). To benchmark the classification per-
formance of the trained CNNs, six medical students, all of whom had 
completed at least 2 years of medical school training, were recruited 
to score the same image sets so that their performance could be 
directly compared with CNNs. Originally, although they were aware 
of BSFS, the students had not been trained specifically on grading 
stools with the BSFS. In Fig. 3e and Supplementary Fig. 5, the same 
group of medical students (six for the training set and five for the test 
set) produced a single prediction per image, represented by single 
red points. Averages of the medical students for each task are repre-
sented by green points (calculated from n = 6 (training set) and n = 5 
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(test set) students, for constipated stool, normal stool and diarrhoea). 
For each given image, the deep CNN yields a stool class probability 
P. The prediction ŷ is defined by ŷ = P ≥ t when a threshold prob-
ability t was fixed. To calculate the performance of the CNN, an area 
under the curve (AUC; represented by a blue curve in the graph), 

with a minimum value of 0.5 and a maximum value of 1, was cal-
culated based on drawing blue curves by sweeping t in the interval 
0–1. Regardless of the gold standard for stool classification selected, 
the CNN showed better performance than the untrained medical 
students in the training sets and demonstrated comparable results 
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with trained medical students in the test sets. In the training sets, the 
AUCs for each case was over 0.97, whereas, in the test sets, the AUCs 
for each case had a minimum of 0.89. Twelve ROCs were generated 
from algorithms trained by each surgeon (Supplementary Fig. 5).

Defecation monitoring. We housed the defecation-monitoring 
module in the external enclosure of a commercially available elec-
tronic bidet. A pressure sensor (FSR 402, Interlink Electronics) con-
sisting of a force sensitive resistor (FSR) was installed underneath 
the toilet seat to detect the initiation of the defecation process (Fig. 
4). When the user applies pressure onto the FSR, the decrease in 
resistance confirms the presence of a user. An analogue-to-digital 
converter (MCP3008, MicroChip Technology) is used to convert 
the analogue signals from the FSR to digital signals that can be read 
by a microcomputer (Raspberry Pi v.3). By reading the signal dura-
tion from the FSR, we are able to estimate the total seating time of 

a user. Once a signal from the FSR is detected, the microcomputer 
relays the signal to initiate LEDs and video recording of the toilet. 
An LED strip is installed under the toilet seat, ensuring the exact 
same lighting conditions during each toilet use. The video camera 
is installed in the rear portion of the toilet seat and housed within 
the commercial electronic bidet enclosure (Fig. 4a). The video cam-
era captures the toilet image continuously while the pressure sensor 
returns signals above a threshold, including a grace period of an 
additional 30 s. After acquisition, these images are fed to the first 
custom-trained deep CNN, which distinguishes between the pos-
sible states of the toilet—clean, urine, stool or toilet paper. By using 
the first custom CNN, we are able to determine the first stool drop-
ping time, which is significantly correlated with overall bowel func-
tion. The first stool dropping time is estimated by the duration of 
time between a clean or urine state and a stool state. As every image 
is annotated with a corresponding time-stamp, the duration can be 
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defecation event. The collected images are then fed into deep CNN layers for stool classification. b, When the pressure sensor installed on the toilet seat 
is triggered after the user sits down (t0), a video recording assisted by LED lighting is initiated. The video camera records the entire defecation process 
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thereafter). In this case, the end of defecation was determined by the point at which participant 1 used toilet paper. d, If a toilet state is in the stool state, 
the images are then introduced to the second custom CNN to determine their BSFS. The graph indicates that the CNN prediction of BSFS is majorly BS4, 
representing normal stool. When the pressure sensor returns a null signal (tf), the fingerprint scanner installed on the tank flush identifies the user and the 
user information is annotated to the data. e, In addition to stool classification information, other information, such as total defecating time (either t2–t1 or 
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generated 55 defecation events. Associated information, such as first stool dropping times, defecation durations and total seating times, are shown.
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easily calculated. In a similar manner, defecation duration can be 
calculated by either calculating the duration between a stool state 
and a toilet paper state or the duration between the first stool drop-
ping time and null signals lasting more than 30 s from the pressure 
sensor. Here we assumed that the use of toilet paper or standing 
up indicates the user’s intention to terminate the defecation event. 
Once an image is determined to belong to the stool state, it is fed to 
the second custom trained deep CNN to determine its BSFS.

To determine the prediction accuracy of developed module, 11 
participants (5 females and 6 males) were recruited for system testing 
over a period of 5 weeks. The research participants were instructed 
to use the toilet system as they would use any normal toilet. All of 
the participants completed multiple of defecations up to 10 events, 
and a total of 55 defecation events were recorded. The participants’ 
first stool dropping times, defecation durations, seating times and 
corresponding BSFSs were obtained, parts of the results of which 
are shown in Fig. 4. BSFSs were acquired from the toilet’s CNN pre-
diction, the general surgeons and the users themselves. Only two 
research participants graded their own stool, whereas the other 
nine participants declined to review/grade their own stool. The 
CNN prediction for BSFS was quite accurate—the predictions of 
the CNN and the surgeons align well with one another (match rate 
of 76.35% between surgeon A and CNN A and 74.54% between sur-
geon B and CNN B). Once the CNN had been retrained using addi-
tional participant data, the match rate of the evolved CNN (CNN A) 
was raised to 85.45%. It should be noted that 81.81% of mismatch 
cases were comprised of either cases with a scale difference of 1 in 
BSFS (for example, CNN prediction: 3 and surgeon’s annotation: 4) 
or cases in which the second most prediction of the CNN matched 
with the surgeon’s annotation. As expected, the annotations of the 
participants showed a lower match rate with the annotations of the 
surgeons. The overall match rate between the grading of the partici-
pants and the surgeons was 64.28%.

The toilet has the ability to observe the dynamic changes of 
stool—that is, stool morphology and liquidity changes over time in 
the toilet bowl—which have not been investigated in the field. This 
change sometimes results in mixed types of BSFS. Furthermore, the 
CNN prediction for extreme BSFS (scale 1) showed poor predic-
tion owing to the low number of training samples at the beginning; 
however, during the course of the toilet development, a substan-
tial number of stool images were added, such that the CNN can 
be significantly improved to provide more accurate predictions. 
Moreover, a mobile application embedded with the retrained CNN 
was developed for users who want to continuously monitor their 
stools in an ordinary toilet environment (Supplementary Fig. 6).

User identification. User identification in the toilet system is cru-
cial as the system is expected to be shared with housemates. Over 
time, it will eventually be integrated into the EHR, so that every 
toileting event will be recorded and associated with the user. To 
accomplish this, we used two methods of biometric identification. 
First, we designed a fingerprint scanner embedded in the flush 
lever. A 3D-printed flush lever containing a fingerprint scanner was 
attached to the toilet (Fig. 5a). At the end of each urination and/or 
defecation event, the fingerprint scanner prompts a user through 
a green light indicator. When the user actuates the flush lever, his/
her fingerprint is registered by the embedded scanner. All collected 
data (images and videos), in their raw data formats, were annotated 
with respect to the user and transmitted to a cloud system through 
wireless communication. To validate the fingerprint identification 
module, we performed ‘genuine’ and ‘impostor’ judge studies54; 
genuine scores indicate the level of agreement between multiple 
samples of the one’s fingerprint and impostor scores are obtained 
by matching samples from different fingers. In the following analy-
sis, ten participants (five females and five males) registered their 
fingerprints more than ten times (a total of 410 times from all of 

the participants) and a histogram of accuracy scores was plotted  
(Fig. 5a). Note that the negligible overlap indicates an excel-
lent identification ability between different fingerprint samples. 
Furthermore, the ROC curve was generated, and AUC was 0.95 
(Fig. 5a).

To ensure EHR compatibility, an additional method of biometric 
identification was used. Although the fingerprint scanner installed 
on the tank lever provides reasonable user identification, some sce-
narios may be misleading in an identification process. For example, 
if someone other than the original user flushes the toilet, it causes 
confounding errors in identification. Furthermore, some industry-
level smart toilets are already equipped with automatic flushing 
without the flush lever and, therefore, require different identifica-
tion methods.

Another identification method—utilizing the analprint, which 
is user-specific—was therefore designed and implemented into the 
toilet system. A scanner was installed to record a short video clip 
of the user’s anus. The ROI—the anus—was then identified using 
an image recognition algorithm (template matching; Fig. 5b). The 
video clip was divided into frames and then compared with a set 
of reference images of the user’s analprint. To test the feasibility 
of this approach, ani from 11 research participants were analysed 
and the anus morphologies were compared (Stanford Institutional 
Review Board (IRB) approval, 45621; Seoul Song Do Hospital IRB 
approval, 2018-008). Among 11 participants, two video clips of the 
anus per participant were acquired from 7 participants, whereas 
one video clip of the anus per participant was acquired from 4 
participants. As stated, all of the video clips were fragmented into 
frames. Three algorithms were used to compare the fragmented 
frames with the reference frames stored in the system—the mean 
squared error (MSE)55, the structural similarity index measure56 
(SSIM) and a CNN. The MSE is the simplest and most widely 
adopted full-reference-quality metric that calculates the average of 
the squared intensity differences in the pixels of acquired and ref-
erence images, along with the related peak signal-to-noise ratio by 
scaling the MSE according to the image range. An MSE value of 0 
indicates perfect similarity, whereas an MSE value of greater than 
100 implies less similarity and will continue to grow as the aver-
age difference between pixel intensities increases as well. Whereas 
the MSE measures the perceived errors from pixels, SSIM estimates 
the perceived change in the structural information of the image. 
SSIM values range from −1 to 1, where 1 stands for perfect similar-
ity and −1 for the complete dissimilarity. The third method of the 
measurement is the same CNN architecture for stool analysis. We 
again adapted a transfer-learning technique to train the machine for 
classification. Detailed descriptions of all of the above algorithms 
are provided in the Supplementary Information. An example of bio-
metric identification that uses analprints is demonstrated in Fig. 5 
and Supplementary Table  4. All three algorithms provided a rea-
sonable distinction of the participants by analysing their analprint. 
These results demonstrate that it is possible to use anus morphology 
as a biometric identifier.

Discussion
Precision health and continuous health monitoring relies on an 
accurate model of human disease to predict or detect disease5. 
For effective continuous health monitoring, considerable progress 
has been made in the development of wearable devices; however, 
these devices still require a certain degree of conscious intervention 
and compliance that may hinder the implementation of precision 
health. To overcome these limitations, we have developed a passive 
human health monitoring system that can be easily incorporated 
into a normal daily routine requiring minimal or even no human 
intervention. Our current toilet system consists of several indepen-
dent modules (urinalysis, uroflowmetry, defecation monitoring 
and biometric identification) that use sensors, machine-learning 
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algorithms and computer-vision assays to acquire basic properties 
(such as temporal parameters of urination and defecation, mor-
phology of stool, flow parameters of urination, biochemical con-
stituents of urine) of human excreta in a convenient manner. Using 
the acquired parameters, the current toilet system has the potential 
to help diagnose/monitor irritable bowel syndrome, benign pros-
tatic hyperplasia and/or urinary tract infection by collecting stool/
voiding diaries and urine dipstick tests. In the future, we aim for 
our toilet system to be an all-in-one, autonomous, non-invasive 
and more affordable device, as well as being clinically applicable by 
enabling the targeting of various diseases. The toilet will ultimately 
function as the daily clinic for continuous monitoring of human 

excreta, feeding data into models of human health that can be used 
for screening and subsequent diagnostics. The toilet facilitates 
streamlined and diligent data reporting, enabling seamless collec-
tion of longitudinal data for users with consistency and detail that 
was not possible before the era of the internet of things and reliable 
machine learning.

Clinical implications. Emerging continuous-monitoring tech-
nologies require thorough clinical trials with large populations to 
determine whether they improve disease detection and early inter-
vention. However, in most cases, the technology must first be devel-
oped before it can be validated, as the validation is dependent on 
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the final form of the technology. The current toilet system is not yet 
a screening or diagnostic tool as such. Although the data collected 
by the current version of the toilet do not directly enable the diag-
nosis of a disease state, they help to augment our understanding of 
human health and identify a baseline, or threshold, from which to 
identify disease.

To achieve this goal, the prototype of the toilet aims to measure 
very fundamental physical/biochemical parameters from human 
waste products. Our first criterion was smart adaptation of routine 
clinical tests in an ordinary toilet. The toilet therefore performs 
routine urinalysis on the basis of a colorimetric test strip and uro-
flowmetry, which are widely used and validated clinical tools22. 
Furthermore, our toilet system provides routine, clinically relevant 
stool analysis on the basis of the BSFS using a CNN. Although com-
prehensive stool analysis involves biochemical analysis of the stool 
(including microbiome analysis), it requires bulky and expensive 
analytical equipment as stool is inherently heterogeneous in con-
trast to relatively homogeneous urine. This would inevitably require 
a more expensive and complex biochemical analysis system, pos-
sibly hindering the widespread use of the toilet. Instead of analysing 
the biochemical composition of stool, analysing the morphology 
and liquidity of stool provides a more convenient and straightfor-
ward method to derive potential clinical insights. An evidence-
based stool-analysis method based on morphology and liquidity, 
BSFS, has been extensively utilized in both clinical practice and res
earch39,42,53,57. As stool morphology is directly correlated with tran-
sit time in the lower gastrointestinal tract, it can be used to obtain 
signs of a wide range of diseases that affect the gastrointestinal 
system57, such as inflammatory bowel diseases. Measuring stool 
on the BSFS provides insights into physiology and disease, such 
as bacterial growth rate, bile acid metabolism, oestrogen metabo-
lism, irritable bowel syndrome and neoplasias57. Furthermore, as 
the BSFS is formulated to be purely reliant on visual assessment 
and described in everyday language (Supplementary Table 1), it is 
theoretically possible for an untrained person to classify their own 
stool. The BSFS classifications are especially valuable when many 
data points are obtained in continuous monitoring; however, clas-
sifying one’s own stool is sometimes unpleasant and requires extra 
effort for the participant, hampering reliable self-reporting over an 
extended period of time. A certain level of disparities between the 
descriptions of stool by patients and true stool classification41 as well 
as superior annotations by physicians42 lead to demand for a more 
objective and reliable method to measure stool classification, espe-
cially for continuous monitoring. Deep CNNs have great potential 
for general and highly variable classification tasks across numerous 
object categories. Recently, a CNN was developed that exhibited an 
accuracy comparable to that of a dermatologist in identifying skin 
cancer when presented with images of skin lesions58. In a similar 
manner, we adopted this strategy for precise classification of human 
stool using a single CNN that was trained using stool image files 
comprising pixel values and labelled with corresponding stool 
classes. In this manner, the CNN is able to identify stool class reli-
ably during defecation. Furthermore, the combination of computer-
vision image analysis, mechanical retractable cartridge and a simple 
computing unit can provide clinically relevant data. Point-of-care 
devices and tools that are commercially available and/or investi-
gated under active research can be integrated into the future toilet 
system to provide a clear pipeline to clinical decision making. A list 
of potential disease screening that may eventually benefit from the 
toilet is provided in Supplementary Table 2.

User acceptance, data security and privacy protection. Ideas simi-
lar to this toilet have been discussed for many years in the medical 
engineering community with few tangible outcomes to date. This 
impediment in scientific innovation may be in part due to the taboo 
on publicly broaching and discussing private matters such as human 

waste, excretory organs and genitalia. In other words, much like the 
internet of things and telemedicine, a technological innovation such 
as this toilet is inherently linked to the risks and uncertainties sur-
rounding its protection of private health data and the user’s privacy. 
Furthermore, the widespread use of such technological innovations 
will be heavily dependent on user acceptance and compliance.

To gauge the user acceptance level of the proposed toilet concept, 
we created and distributed a short survey to the Stanford commu-
nity (Stanford IRB, 51666; total respondents, 300). We note that our 
current survey population is biased because it represents a highly 
educated group from one geographical location (Supplementary 
Fig. 7). Despite this biased population, the overall acceptance level 
of the toilet system (Supplementary Fig. 8) was within an acceptable 
range as the majority of responses were either ‘somewhat comfort-
able’ (37.33%) or ‘very comfortable’ (15.33%) to use the toilet sys-
tem, whereas 30.00% of the respondents feel uncomfortable to use 
the system (on the basis of the 5-point Likert scale). The vast major-
ity of the concerns of participants were regarding privacy protection 
and data security enactment in the toilet system. Interestingly, we 
observed a statistically significant preference of non-camera-based 
modules (the urinalysis and fingerprint modules over uroflowm-
etry, stool analysis and analprint modules combined; P < 0.0001, 
two-sample t-test). The most accepted module is urinalysis, whereas 
the least favoured module is analprint. In this survey, no gender dis-
crepancy was observed except for the stool analysis module (males 
are more favourable to this module). The survey information is pro-
vided in detail in the Supplementary Information.

Since the beginning of the project, we have taken the privacy 
and data security of users very seriously. For the data security, our 
protocols were thoroughly reviewed and approved by two institu-
tional review boards and even further evaluated with Data Risk 
Assessment (DRA) by the Stanford Information Security Office and 
University Privacy Office. Our research protocol has strictly fol-
lowed the recommendations of the Stanford DRA to ensure data 
security. The recommendations of the DRA are provided in detail 
in the Supplementary Information. As the data collected from the 
toilet prototype are regarded as protected health information of the 
research participants, the transmission and storage of such data 
have been compliant with the Health Insurance Portability and 
Accountability Act of 1996 (HIPAA).

Current limitations. The current version of the toilet system has 
been developed in a modular format, which requires industrial-
level product design, process design and integration, and quality 
control as a healthcare product. Inherently, a toilet environment is 
not sterile, which may lead to false positives in biochemical assays 
integrated in the toilet system. Self-cleaning mechanisms therefore 
have to be developed, adopted and integrated after each use in the 
future to maximize the accuracy of any given assays in the toilet. 
Moreover, the current system is not compatible with squatting toi-
lets, but with only sitting toilets (known as western style toilets). 
Although there is a considerable global trend towards more sitting 
toilets59, from an engineering viewpoint, mounting a toilet system 
onto a squatting toilet is not technically challenging. Nonetheless, 
squatting toilets often coincide with use by populations in which 
the most urgent need is for sanitation and the prevention of infec-
tious diseases. Health monitoring remains important; however, it 
is beyond the scope of what is urgently needed by some popula-
tions. Globally, approximately 1 billion people have no access to a 
toilet at all and are forced to defecate in the open. Diseases transmit-
ted through the faecal–oral route or by water, such as cholera and 
typhoid fever, can be spread by open defecation. They can also be 
spread by unkempt toilets, which cause pollution of surface water 
or groundwater. In this case, rather than a health monitoring func-
tionality, sanitation will be a key functionality in squatting toilet sys-
tems. Nonetheless, we have developed a mobile phone application 
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to minimize any disparity caused by not having a toilet system for 
health monitoring (Supplementary Fig. 6).

The urinalysis and uroflowmetry modules presented in this study 
have been tested for only standing male participants because of the 
differences in female and male urinary stream. Both genders will 
be covered in the future toilet system. For example, an extendable 
wand can deploy the urinalysis strip toward the potential location 
of the female urine stream. Another approach for implementing the 
uroflowmetry module is sonouroflowmetry, which uses sound to 
estimate the urine flow rate and volume60. Sonouroflowmetry can 
be implemented for both male and female users, in sitting or stand-
ing positions, while avoiding optical scans of the user’s body parts.

Outlook. In future research, we aim to include multiple, clinically 
relevant assays in our system: (1) microfluidics observation of cel-
lular components from urine, (2) physical, quantitative analysis of 
defecation and (3) sample-to-answer type biochemical analysis of 
stool, including genomics and microbiomics. For quantitative stool 
analysis, the anal scanner, which is used for analprint recognition, 
will be used to monitor the entire defecation processes. Using a 
similar algorithm as that used in the above-mentioned uroflow-
metry, the total volume of defecation and the colour of stool will 
be measured using only image analysis. The expected result is a 
precise description of hydrodynamics of human defecation61. For 
biochemical stool analysis, a standard guaiac faecal occult blood 
test62–64 (gFOBT) will be used. It is used to detect the presence of 
faecal occult blood and is a logical choice for toilet integration. 
gFOBT is used to diagnose not only colorectal cancer, but also gas-
troesophageal cancer, gastrointestinal bleeds, diverticulosis, haem-
orrhoids, anal fissures, colon polyps, ulcerative colitis and Crohn’s 
disease. Luminol, which is similarly used in forensic investigation, 
is a candidate to detect this occult blood in stools. Faecal calpro-
tectin34–36 levels may also be of importance and under surveillance 
as this biomarker indicates inflammatory processes. Furthermore, 
a great deal of progress into the understanding of the microbiome 
has been made65–68, and the future toilet can take advantage of this 
by including microbiome analysis. Finally, to implement person-
alized medicine, additional biochemical analysis—on the basis of 
biomarkers for a specific disease/illicit substance screening—will be 
added to the future system. For urinalysis, potential panels include 
screening capabilities of illegal drugs, sexually transmitted infec-
tions, urinary tract infections, alcohol abuse and maternity, all of 
which are already in the market. We also aim to develop nanoassays 
for on-demand biomarkers indicative of specific diseases. We envi-
sion that the future toilet has a customized monitoring system with 
personalized assays according to the opinion of healthcare profes-
sionals on the basis of the risk assessment of the user.

Biochemical analyses of human excreta in a toilet environment 
would require bulky and expensive analytical instruments and 
complex sample preparation modules for downstream analysis. 
Inevitably, it requires a more expensive and complex biochemical 
analysis system that may not fit within the dimensions of a toilet. 
A sample-to-answer type test is therefore more appropriate in the 
toilet system. To implement these types of assays within the toilet 
system, standard workflows for biochemical analyses of urine/stool 
will be developed and incorporated. This workflow includes four 
subprocesses regarding a point-of-care assay development, includ-
ing (1) sample collection and preservation, (2) sample preparation, 
(3) molecular recognition, amplification and signal transduction, 
and (4) system integration. The implementation strategies are pro-
vided in detail in the Supplementary Information.

This toilet system is expected to have a major impact on health 
monitoring research, as the toilet enables longitudinal monitoring 
of human health with minimal interference of human behaviour. 
It enables patients to reliably obtain data for their own health as 
well as enabling investigators to conduct large clinical trials. Future 

large clinical studies will investigate normal baseline data to opti-
mize the threshold for alerting abnormal results, monitoring fre-
quency, performance accuracy and cost. One major objective will be 
to mitigate overdiagnosis, which can be associated with harm, such 
as false alerts, alert fatigue and unnecessary medical treatment5. The 
collected baselines will not only be used for guiding the treatment 
and management of specific diseases but can also serve as a ‘canary 
in coal mine’ for timely identification and mitigation of many seri-
ous conditions.

Methods
Urinalysis. Synthetic urine was used for colorimetric calibration in videos. For 
test-strip analysis, synthetic urine was generated using 1,000 ml of 0.02 M hydrogen 
chloride (HCl) solution, 1.9 ml of 25% v/v solution of ammonia, 14.1 g sodium 
chloride (NaCl), 2.8 g potassium chloride (KCl), 17.3 g urea, 0.6 g calcium chloride 
(CaCl2) and 0.43 g magnesium sulfate (MgSO4). The synthesized urine was spiked 
with corresponding chemicals, including bovine serum albumin for proteins.  
A dip-and-read test strip, the Accustrip URS 10 Reagent strip (Jant Pharmacal), 
was used for urinalysis. The test strip delivers qualitative and semi-quantitative 
tests for erythrocyte, urobilinogen, bilirubin, protein, nitrite, ketones, glucose, 
pH, specific gravity and leukocytes by visual assessment compared with a colour 
chart provided for each concentration range. For accurate strip reads, the test strip 
was instrumentally read using the Accustrip URS reader (Jant Pharmacal) and 
compared with the results generated using our algorithm.

Uroflowmeter. For uroflowmetry implementation, the above-mentioned synthetic 
urine was used for video calibration (Supplementary Information). All calibration 
was compared to the gold standard provided by a clinical grade uroflowmeter 
(URODYN1000, Dantec Medical)

Image analysis of stool. After images were captured in the toilet, they were then 
classified using a machine learning algorithm58. In short, a GoogLeNet Inception 
v.3 (Google) CNN architecture was used because it is available as open source 
software and has previously been trained on approximately 1.3 million images 
(1,000 object categories) for the ImageNet Large Visual Recognition Challenge69,70. 
We retrained this architecture, using a process known as transfer learning during 
which insights gained while solving one specific task with a machine learning 
algorithm are applied to a different but related task using TensorFlow70. In our case, 
we retrained Inception v.3 on 10 toilet classes comprising the seven BSFS classes 
in addition to three other toilet classes: the clean state, the urine-only state and the 
toilet paper state. Our original dataset contains 2,902 stool images spanning all 7 
BSFS types and 245 other images used for the three other toilet state classifications, 
including clean toilets, toilets with urination only and toilets filled with toilet 
paper. These stool images were acquired through search engines such as Google, 
Bing and Yahoo (keywords included ‘stool in toilet’ and ‘faeces’). Over the course 
of the toilet development, we collected an additional 12,226 stool images and 
relevant toilet status images from the research participants (n = 11). As real stool 
images from research participants accumulate, the performance of our CNN will 
be considerably enhanced.

Three-dimensional printing. New parts required for the toilet assembly were 
designed using computer aided design (CAD) software, Rhinoceros 3D (Robert 
McNeel & Associates). The designed parts were then exported as the .stl file 
format, which is compatible with numerous 3D printers and 3D printing services. 
The parts were then printed using a Dremel 3D45 Printer (Dremel Digilab, Robert 
Bosch), Ultimaker 2 (Ultimaker) or fused deposition modelling at the Stanford 
Product Realization Laboratory, a multi-site teaching facility at Stanford University.

Prototyping of printed circuit boards. All of the electronic circuits were first 
tested on a breadboard. After validating the parts, research-grade PCBs were built 
by the Stanford System Prototyping Facility (SPF). Small electronic parts such 
as metal-oxide-semiconductor field-effect transistors, rectangular connectors 
(male pins, female sockets) and cable ribbons were acquired from Digi-Key. Two 
circuit boards were designed to control the urine module and defecation module. 
Initial prototype parts for the toilet system are listed and the circuit diagram of 
each module is provided in Supplementary Table 5 and Supplementary Fig. 9, 
respectively. Each module controls the proposed urination/defecation analysis 
process by controlling LED lighting, video recording, pressure sensor and a passive 
infrared motion sensor. These individual modules will be integrated.

Cloud system. Dropbox (a cloud file storage and syncing service) application 
program interface v.2 was used to establish an initial cloud system for storing non-
patient health information. We used a third-party script that enables the upload, 
download, listing of or deletion of files from Dropbox. Acquired images, videos 
and biometric information from the toilet system are constantly synchronized with 
Dropbox using a Raspberry Pi. Similarly, for patient health information, Research 
Electronic Data Capture system (REDCap) and/or Stanford Medicine Box, which 
can be used to collect sensitive data (including 21 Code of Federal Regulation 
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Part 11, Federal Information Security Management Act, and HIPAA-compliant 
environments), were established. A flowchart of the cloud system is shown in the 
Supplementary Schematic.

Other parts are described in Supplementary Table 5.

Human participants. This study was approved by the Stanford IRB, under trial 
registration numbers 45621 and 51666 (Smart Toilet User Acceptance Survey) 
and by the Seoul Song Do Hospital IRB, under trial registration number 2018-
008. The participants were recruited through flyer advertisements and e-mail 
lists. Once participants showed interest, a short introduction of the research 
study was provided, along with possible risks and benefits, participant’s rights 
(responsibilities and withdrawal) and financial compensation. All of the 
participants signed the printed consent form after we addressed all of their 
concerns in person.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Restrictions apply to the availability of the medical training and validation data, 
which were used with permission of the participants for the current study, and are 
therefore not publicly available. Some of the data may be available from the authors 
on reasonable request, after permission from the Stanford University School of 
Medicine and/or the Seoul Song Do Hospital.

Code availability
The codes may be available from the authors on reasonable request, after 
permission from the Stanford University School of Medicine and/or Seoul Song Do 
Hospital.
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